a2 United States Patent

Wei

US009264265B1

US 9,264,265 B1
Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(1)

(52)

(58)

SYSTEM AND METHOD OF GENERATING
WHITE NOISE FOR USE IN GRAPHICS AND
IMAGE PROCESSING

Inventor: Li-Yi Wei, Redwood City, CA (US)

Assignee: NVIDIA CORPORATION, Santa

Clara, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1818 days.

Appl. No.: 10/956,954

Filed: Sep. 30, 2004

Int. Cl.

HO4L 12/743 (2013.01)

HO4L 25/03 (2006.01)

U.S. CL

CPC HO04L 25/03299 (2013.01); HO4L 25/03993

(2013.01)
Field of Classification Search
CPC HOA4L 25/03299; HO4L 25/03993
USPC 380/205, 37, 38, 42, 201, 200; 713/176,
713/181, 189; 345/418, 426, 419, 587, 626,
345/582;717/143
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,549,210 B1* 4/2003 Van Hooketal. 345/561
6,628,786 B1* 9/2003 Dolecoocovvvvvnvriics 380/44
6,747,660 B1* 6/2004 Olanoetal. 345/582
7,015,909 B1* 3/2006 Morgan, III et al. ... 345/426
7,133,041 B2* 11/2006 Kaufman etal. 345/419
7,203,310 B2* 4/2007 England etal. 380/200
2002/0147918 Al* 10/2002 Osthoffet al. 713/193
2003/0067474 Al* 4/2003 Fenneyetal. 345/582
2004/0046765 Al* 3/2004 Lefebvreetal. 345/582
FOREIGN PATENT DOCUMENTS

GB 2343599 *6/1998 . GO6T 15/00

* cited by examiner

Primary Examiner — Ellen Tran

(57) ABSTRACT

A method of generating white noise for use in graphic and
image processing, in accordance with one embodiment of the
present invention, includes receiving one or more hash inputs.
The hash inputs may be one or more primitive coordinates,
one or more texel addresses, a base image, a device identifier,
or a user password. The one or more hash inputs are evaluated
utilizing a cryptographic hash function. The output of the
cryptographic hash function generates one or more white
noise samples. The white noise samples may be utilized as
texel data. The white noise samples may also be utilized for
encrypting images.

20 Claims, 5 Drawing Sheets

GRAPHIC COMMAND

AND DATAJ
190
HASH INPUTS HOST
INTERFACE
y
1
SpApaes. . sroweTgee
PROCESSOR NoDULES
TEXTURE COORDINATES ‘
120
A
140 130
PARALLEL
HASHING TEXTURE SHADER
ULE MODULE MODULE
TEXEL DATA
WHITE NOISE
1
PIXEL WRITE
MODULE
e
160
170
v v M
DECRYPTED ENCRYPTED RENDERED
IMAGE IMAGE IMAGE

U.S. Patent Feb. 16, 2016 Sheet 1 of 5 US 9,264,265 B1

GRAPHIC COMMAND

AND DATA ‘
190
HASH INPUTS 190
HOST
INTERFACE
\ 4
10 110
GRAPHICS GEOMETRY SETUP —
PROCESSOR AND RASTER
MODULES
TEXTURE COORDINATES ¢ 720
v v v
140 130
PARALLEL —
HASHING TEXTURE SHADER
MODULE MODULE MODULE
TEXEL DATA |
WHITE NOISE
>
150
PIXEL WRITE
MODULE
N
] 160
170
* / \ 4
DECRYPTED ENCRYPTED RENDERED
IMAGE IMAGE IMAGE

FIGURE 1

U.S. Patent Feb. 16, 2016 Sheet 2 of 5 US 9,264,265 B1

N
e
o

RECEIVING A PLURALITY OF
HASH INPUTS

22
EVALUATING EACH OF THE 220
PLURALITY OF HASH INPUTS UTILIZING A
CRYPTOGRAPHIC HASH FUNCTION

!

OUTPUTTING CORRESPONDING
WHITE NOISE SAMPLES

N
%)
o

FIGURE 2A

B) HASH INPUT C) WHITE NOISE

FIGURES 2B, 2C

U.S. Patent Feb. 16, 2016 Sheet 3 of 5 US 9,264,265 B1

3A)L =6, p = 0.01 3B) WOOD GRAIN FROM 3A

3C) L=4,p=0.3 3D) MARBLE VEIN FROM 3C

FIGURES 3A, 3B, 3C, 3D

U.S. Patent Feb. 16, 2016 Sheet 4 of 5 US 9,264,265 B1

410
RECEIVING ONE OR MORE
HASH INPUTS
420 430
GENERATING WHITE NOISE RECEIVING RENDERED
BY HASHING INPUT(S) IMAGE

] ¢4

o

COMBINING THE WHITE NOISE AND
RENDERED IMAGE

T

OUTPUTTING ENCRYPTED IMAGE

4

o

FIGURE 4

5A) INPUT IMAGE 5B) ENCRYPTED IMAGE
FIGURES 5A, 5B

U.S. Patent

Feb. 16, 2016 Sheet 5 of 5 US 9,264,265 B1
605
PROCESSOR
61 615
+ SYSTEM - SYSTEM_
Y MEMORY MEMORY
CONTROLLER
620
HOST
INTERFACE
625 630 635
GRAPHICS S’EQ%HFQS GRAPHICS
PROCESSOR MEMORY R MEMORY
640 645
DISPLAY
CONTROLLER DISPLAY
FIGURE 6A
670 655
HOST -
INTERFACE PROCESSOR
675 660 665
GRAPHICS <« UNIFIED UNIFIED
PROCESSOR MEMORY MEMORY
CONTROLLER
680 685
DISPLAY
CONTROLLER DISPLAY

FIGURE 6B

US 9,264,265 B1

1
SYSTEM AND METHOD OF GENERATING
WHITE NOISE FOR USE IN GRAPHICS AND
IMAGE PROCESSING

BACKGROUND OF THE INVENTION

Three-dimensional graphics processing is utilized in a
number of applications, from electronic games, and movies to
computer aided design (CAD). Conventionally, three-dimen-
sional graphics processing includes a multi-step rendering
process of transitioning from a database representation of
three-dimensional objects to a two-dimensional projection of
the object into a display space. The process generally includes
setting up a polygon model (e.g., a plurality of primitives) of
objects, applying linear transformation to each primitive,
culling back facing primitives, clipping the primitives against
aview volume, rasterizing the primitives to a pixel coordinate
set, shading/lighting the individual pixels using interpolated
or incremental shading techniques, and the like. Typically,
graphics processors are organized in a pipeline architecture,
where each stage is dedicated to performing specific func-
tions. A benefit of the pipeline architecture is that it permits
fast, high quality rendering of even complex scenes.

A random number generator may be utilized for graphics
and image processing applications. For example, the random
number generator may be utilized to generate noise samples
for use in texturing processes. The random number generator
may be implemented by a thermal noise generator (e.g., ther-
mal resistor) or a software implemented sequential random
number generator. A thermal resistor provides a hardware
implementable random number generator having a high
degree of entropy. However, the thermal resistor does not
provide a repeatable random number sequence, which is
important for both hardware/software debugging and main-
taining rendering consistency in animations.

Software implemented sequential random number genera-
tors (e.g., Xy=aX,._,+b) are implemented by the central pro-
cessor unit (e.g., CPU) and provide a random number after a
relatively long sequence. The sequential number generation
processes is repeatable, but is not readily implementable in
hardware. It is appreciated that the input may be determined
from the output (e.g., solve for X, , given X,). It is also
appreciated that random number generators implemented in
software are sequential and present a performance bottleneck
for parallel computations in pipeline architectures. In addi-
tion, typical sequential random number generators (e.g., lin-
ear congruential regression equation) are pseudo-random and
can significantly bias the resultant statistics.

SUMMARY OF THE INVENTION

Accordingly, embodiments of the present invention are
directed toward a system and method of generating white
noise for use in graphic and image processing. In one embodi-
ment, a graphics processor includes a shader module, a tex-
ture module and a parallel hashing module. The texture mod-
ule and the parallel hashing module are coupled to the shader
module. The texture module provides a texture mapping func-
tion to the shader module. The parallel hashing module gen-
erates white noise as a function of a key. The white noise may
be utilized as texel data for use in the graphics processor. The
white noise may also be utilized for encrypting images gen-
erated by the graphics processor.

In another embodiment, a method of generating white
noise for use in graphic and image processing includes receiv-
ing one or more hashing inputs. The hashing inputs may be,
for instance, one or more primitive coordinates, one or more

10

15

20

25

30

35

40

45

50

55

60

65

2

texel addresses, a base image, or a device identifier. The one
or more hashing inputs may be evaluated utilizing a crypto-
graphic hash function. The output of the cryptographic hash
function generates one or more white noise samples. The
white noise samples may be utilized as texel data. The white
noise samples may also be utilized for encrypting images.

Embodiments of the present invention advantageously
generate white noise for use in graphics and image process-
ing. The system and method for generating white noise
advantageously generates a random number having a high
degree of entropy in a single step. Accordingly, the embodi-
ments of the present invention advantageously reduce pro-
cessing latency in graphics and image processing without
consuming memory.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are illustrated by
way of example and not by way of limitation, in the figures of
the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

FIG. 1 shows a block diagram of a graphics processor, in
accordance with one embodiment of the present invention.

FIG. 2A shows a flow diagram of a method of generating
white noise for use in graphics and image processing, in
accordance with one embodiment of the present invention.

FIGS. 2B and 2C show an exemplary hash input and white
noise generated according to the method shown in FIG. 2A.

FIGS. 3A, 3B, 3C and 3D show exemplary noises and
textures generated from such noises, in accordance with one
embodiment of the present invention.

FIG. 4 shows a flow diagram of a method of image encryp-
tion, in accordance with one embodiment of the present
invention.

FIGS. 5A and 5B show an exemplary input image and
encrypted image, in accordance with one embodiment of the
present invention.

FIGS. 6A and 6B show block diagrams of exemplary com-
puting device for implementing embodiments of the present
invention.

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the embodiments
of the invention, examples of which are illustrated in the
accompanying drawings. While the invention will be
described in conjunction with these embodiments, it will be
understood that they are not intended to limit the invention to
these embodiments. On the contrary, the invention is intended
to cover alternatives, modifications and equivalents, which
may be included within the scope of the invention as defined
by the appended claims. Furthermore, in the following
detailed description of the present invention, numerous spe-
cific details are set forth in order to provide a thorough under-
standing of the present invention. However, it is understood
that the present invention may be practiced without these
specific details. In other instances, well-known methods, pro-
cedures, components, and circuits have not been described in
detail as not to unnecessarily obscure aspects of the present
invention.

Referring to FIG. 1, a block diagram of a graphics proces-
sor 100, in accordance with one embodiment of the present
invention, is shown. As depicted in FIG. 1, the graphics pro-
cessor 100 may include geometry setup and raster modules
110, a shader module 120, a texture module 130, a parallel
hashing module 140 and a pixel write module 150. The shader
module 120 may be coupled to the geometry setup and mod-

US 9,264,265 B1

3

ules 110. The texture module 130 and the parallel hashing
module 140 may be coupled in parallel with each other to the
shader module 120. The pixel write module 150 may be
coupled to the shader module. It is appreciated that the graph-
ics processor 100 may also include one or more other modules
well-known in the art, such as a fog module, alpha test mod-
ule, depth test module, alpha blend module, etc., coupled to
the geometry setup and raster modules 110, shader module
120, texture module 130, parallel hashing module 140 and/or
pixel write module 150.

The geometry setup and raster modules 110 receives one or
more graphics commands and data from a host interface 190.
The shader module 120 may receive one or more transformed
primitive parameters from the geometry setup and raster
modules 110. The shader 120 may implement one or more
position, color, texture, reflectivity, filter, blend and the like
functions on the primitive parameters. The pixel write module
150 may output pixel data produced by the shader module
120. In one implementation, the pixel write module 150 stores
the pixel data as a rendered image in a memory (e.g., com-
puter-readable medium), such as a frame buffer.

The shader module 120 utilizes the texture module 130 to
provide texture mapping (e.g., level of detail, texel address,
etc.). The texture module 130 receives one or more texture
coordinates from the shader module 120 and returns the cor-
responding texel data from one or more appropriate textures
stored in memory (e.g., mipmap). Alternatively, the shader
120 may utilize the parallel hashing module 140 for texturing
functions.

The parallel hashing module 140 may receive one or more
hash inputs. A hash input may be a plurality of primitive
parameters, one or more texel addresses, a base image, a
device identifier, a graphics processor device identifier, a user
password or the like. The parallel hashing module 140 evalu-
ates the one or more hash inputs utilizing a cryptographic
hash function. The cryptographic hash function converts an
arbitrary bit stream, into a unique fixed-length bit stream of
random numbers (e.g., white noise) having a high degree of
entropy. In one embodiment, a plurality oftexture coordinates
are hashed to produce corresponding white noise samples that
are returned as procedural texel data to the shader module
120. In another embodiment, the texture coordinates are
hashed to produce corresponding white noise samples. The
white noise samples may then be utilized to produce other
types of noise (e.g., pink noise, brown noise, fractal noise,
etc.). The other types of noise may then be utilized as texel
data by the shader module 120.

Alternatively or in addition, the parallel hashing module
140 may be utilized to generate white noise for encrypting
images. In one embodiment, a hash input is hashed to produce
white noise. The samples of white noise may be combined
with pixel data (e.g., rendered image) to generate encrypted
pixel data (e.g., encrypted image). In one embodiment, the
graphics processor 100 further includes a first XOR gate 160.
The parallel hashing module 140 receives one or more hash
inputs at an input and outputs a white noise. The first XOR
gate 160 receives an image (e.g., rendered image) at a first
input and the white noise at a second input. The first XOR gate
160 outputs an encrypted image at an output. In one imple-
mentation, the encrypted image may be stored in a computer-
readable medium, such as a frame buffer, a graphics memory,
a unified memory or the like. It is appreciated that the
XOR'ing function may alternatively be implemented by a
shader instruction.

It is appreciated that the image may be decoded from the
encrypted image by combining the encrypted image with the
same white noise. In one embodiment, the graphics processor

10

20

25

30

35

40

45

55

4

100 further includes a second XOR gate 170. The second
XOR gate 170 receives the encrypted image at a first input and
the same white noise at a second input. The second XOR gate
170 outputs a decrypted image at an output.

In one implementation, the hash input to the parallel hash-
ing module 140 may be a device identifier (e.g., graphics
processor device identifier), user password or the like.
Accordingly, by combining a rendered image with white
noise generated by hashing a device identifier it may then be
possible to uniquely determine the specific device (e.g., com-
puter) or the individual that generated the image.

It is also appreciated that the white noise generated by the
parallel hashing module 140 may also be utilized by other
functions performed by the shader module 120, raster mod-
ule, fog module, alpha test module, depth test module, alpha
blend module and/or the like.

The cryptographic hash function is a one-way function. It
is generally infeasible to reverse the process to determine the
original input. It is also infeasible to find two different inputs
that produce the same output. Accordingly, given an arbitrary
input, any particular bit of the output should be zero substan-
tially half the time. In addition, any two output samples
should be substantially uncorrelated no matter how similar
the inputs are.

The cryptographic hashing function may be a message
digest algorithm (e.g., MD1, MD2, MD3, MD4, MDS), a
security hash standard (e.g., SHA, SHS) or the like. In one
implementation, an MDS5 algorithm receives an arbitrary
message as an input and produces a 128-bit message digest as
an output. At initialization, the MDS5 algorithm pads the input
to the nearest multiple of 512 bits. The algorithm computes a
128-bit digest from each 512-bit chunk of the input through
64 stages of bit scrambling operations, including AND, OR,
XOR, negation, addition, and circular shifting Boolean func-
tions. The individual digests may then be summed as a final
message digest. It is appreciated that the MDS5 algorithm may
thus be utilized to generate 32-bit white noise samples. More
specifically, four 32-bit texel coordinates may be packed as a
single message and the resulting message digest may be split
into four 32-bit white-noise samples.

The MD5 algorithm is performed utilizing integer and
bit-wise operations. The MDS5 algorithm is designed to be
quite fast for 32-bit processors. For example, 0.73 million
512-bit messages may be hashed per second on a PC having
a 1.5 MHz Intel Pentium CPU. The pipeline nature of the
MDS algorithm also makes it suitable for implementing in
hardware on a graphics processor, such as that in FIG. 1.

It is appreciated that the parallel hashing module 140 does
not suffer from the memory latency or cache coherency issues
that the conventional texture module 130 incurs. For example,
the parallel hashing module 140 utilizing the MDS algorithm
may achieve a maximum throughput of one 128-bit sample
per clock, provided sufficient requests are grouped together.
This translates to 350 million 128-bit samples per second for
a 350 MHz graphics processor. A texture module 130, having
similar length and data dependency, generates approximately
17.4 million 32-bit samples per second on a 350 MHz graph-
ics processor, such as the GeForce FX 5600 from NVIDIA of
Santa Clara, Calif.

It is appreciated that the parallel hashing module 140 may
be implemented in hardware or software utilizing a plurality
of Boolean operators. In one implementation, a MDS5 based
parallel hashing module 140 may typically be implemented
by 64 stages comprising AND, OR, XOR, negation, addition
and circular shifting circuits. The MD5 based parallel hashing
module 140 may also typically be implemented utilizing a
64x32 bit table constructed from the sine function. The hard-

US 9,264,265 B1

5

ware costs of the parallel hashing module 140 may be reduced
by simplifying the MDS5 algorithm. In one implementation,
latency of the parallel hashing module 140 may be reduced by
reducing the stage of circuits to 16 stages by executing 4
adjacent stages in parallel. Alternatively or in addition, the
computer-readable medium for storing sine table entries may
be reduced by keeping only the 8 most significant bits of each
sine table entry, and replicating each 8 bit entry into 32 bits at
run time. Accordingly, simplifying the hardware implemen-
tation of the cryptographic hashing function may advanta-
geously reduce processing latency and consumption of sys-
tem memory.

Referring now to FIG. 2A, a flow diagram of a method of
generating white noise for use in graphics and image process-
ing, in accordance with one embodiment of the present inven-
tion, is shown. As depicted in FIG. 2A, the method begins
with receipt of one or more hash inputs, at step 210. Each hash
input may be one or more primitive coordinates, one or more
texel addresses, base image, a device identifier, a user pass-
word and/or the like.

At step 220, the hash input(s) are evaluated utilizing a
cryptographic hash function. Each sample of the hash inputs
may be evaluated independently and in parallel. The crypto-
graphic hash function may be a message digest algorithm
(e.g., MD2, MD3, MD4, MD5), a security hash standard
(SHS, SHA, SHS-1, SHA-1, SHA-224, SHA-256, SHA-384,
SHA-512) or the like. Such cryptographic hash functions
generate random numbers having a high degree of entropy in
a very short sequence.

At step 230, the white noise samples generated by the
cryptographic hashing function are then output. Referring
now to FIGS. 2B and 2C, an exemplary hash input and white
noise generated according to the method shown in FIG. 2A, is
shown. As depicted in FI1G. 2B, the exemplary hash input may
be a 256x256x%3 image. The exemplary white noise generated
by hashing each input pixel independently is depicted in FIG.
2C. The total computation time is approximately 60 millisec-
onds on a PC having a 1.5 GHz Intel Pentium processor.

The white noise samples, generated according to the
method shown in FIG. 2A, may be output as procedural
texturing (e.g., mathematically generated texel values) for use
by the shader module, raster module, fog module, alpha test
module, depth test module, alpha blend module and/or the
like. The white noise samples may also be output for further
processing by the hashing module 140, shader module 120,
raster module, fog module, alpha test module, depth test
module, alpha blend module and/or the like. In one imple-
mentation, the white noise may be further processed to gen-
erate pink noise, brown noise, fractal noise or the like, in
accordance with any well-known prior art functions. Such
other noise may be used to generate patterns, such as wood,
marble, etc., without the use of a texture stored in memory
(e.g., mipmap).

Referring now to FIGS. 3A, 3B, 3C and 3D, exemplary
noises and textures generated from such noises, in accordance
with one embodiment of the present invention, are shown.
The textures may be generated as a function of white noise
from the parallel hashing module of 140 of FIG. 1 in accor-
dance with the process described with reference to FIG. 2A.
For example, fractal noises, generated from white noise, with
different levels L and persistence p are depicted in FIGS. 3A
and 3C. FIGS. 3B and 3D depict corresponding textures
generated from the fractal noise samples shown in FIGS. 3A
and 3C. Assuming the fractal noises of FIGS. 3A and 3C are
normalized in the range [0 1], the wood grain texture in FI1G.
3B is generated by fractions(8xN,) and the marble vein in
FIG. 3D is generated by Icos(4mxx+NI.

20

30

40

45

50

55

6

Referring now to FIG. 4, a flow diagram of a method of
image encryption, in accordance with one embodiment of the
present invention, is shown. As depicted in FIG. 4, the method
of' image encryption begins with receiving one or more hash
inputs, at step 410. Each hash input may be a device identifier,
auser password, a base image (e.g., simple ramp image), one
or more primitive coordinates, one or more texel addresses
and/or the like.

At step 420, the one or more hash inputs are evaluated
utilizing a cryptographic hash function to generate a plurality
of'white noise samples. Each sample of the hash input may be
evaluated independently and in parallel. The cryptographic
hash function may be a message digest algorithm (e.g., MD2,
MD3, MD4, MDS), a security hash standard (SHS, SHA,
SHS-1, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512)
or the like. Such cryptographic hash functions generate ran-
dom numbers having a high degree of entropy. Furthermore,
an arbitrary large number of white noise samples may be
produced from a small hash input (e.g., graphics processor
device identifier).

At step 430, a rendered image is received. In one imple-
mentation, the rendered image may be a plurality of pixel
values destined for storage in a frame buffer or similar com-
puter-readable medium. The generated white noise is bit-wise
combined with the received rendered image to effectively
encrypt the rendered image, at step 440. In one embodiment,
the pixel values are combined with the white noise samples
utilizing a bit-wise Boolean XOR function. At 450, the
encrypted image generated by XOR'ing the rendered image
and the white noise is output.

Itis appreciated that the encrypted image may be decrypted
by combining the encrypted image with the same white noise.
More specifically, the pixel values of the encrypted image are
combined with the same white noise samples utilizing the
bit-wise Boolean XOR function to generate the decrypted
image.

Referring now to FIGS. 5A and 5B, an exemplary input
image and encrypted image, in accordance with one embodi-
ment of the present invention, is shown. The encrypted image
depicted in FIG. 5B is generated by bit-wise XOR’ing the
input image depicted in FIG. 5A with white noise generated
utilizing a cryptographic hashing function. It is appreciated
that the encrypted image may be decrypted by XOR’ing the
encrypted image with the same white noise.

Referring now to FIGS. 6A and 6B, block diagrams of
exemplary computing devices for implementing embodi-
ments of the present invention, are shown. The computing
devices may be a cellular telephone, PDA or other portable
wireless appliance, navigation system (e.g., map enabled
GPS), palm-sized computer, tablet computer, game console,
personal entertainment center, media center PC, computer
based simulator, desktop computer, laptop computer, or the
like. The computing device architectures provide the execu-
tion platform for implementing certain functionality of
embodiments of the present invention. As depicted in FIG.
6A, a first computing device may include a processor 605, a
system memory controller 610, a system memory 615, a host
interface 620, a graphics processor 625, a graphics memory
controller 630, a graphics memory 635, a display controller
640 and a display 645. The processor 605 may be communi-
catively coupled to the system memory 615 through the sys-
tem memory controller 610. The processor 605 may also be
communicatively coupled to the graphics processor 625
through the host interface 620. The graphics processor 625
may be communicatively coupled to the graphics memory
635 through the graphics memory controller 630. The graph-
ics memory controller 630 may also communicatively couple

US 9,264,265 B1

7

the display controller 640 to the graphics memory 635. The
display 645 may be communicatively coupled to the display
controller 640.

As depicted in FIG. 6B, a second computing device may
include a processor 655, a host interface 670, a graphics
processor 675, a unified memory controller 660, a unified
memory 665, a display controller 680 and a display 685. The
processor 655 may be communicatively coupled to the uni-
fied memory 665 through the unified memory controller 660.
The processor 655 may also be communicatively coupled to
the graphics processor 675 through the host interface 670.
The graphic processor 675 may be communicatively coupled
to the unified memory 665 through the unified memory con-
troller 660. The unified memory controller 660 may also
communicatively couple the display controller 680 to the
unified memory 665. The display 685 may be communica-
tively coupled to the display controller 680.

The processor 605, 655 provides one or more applications
by operating on instructions (e.g., computer executable code)
and information (e.g., data) stored in memory 615, 665 (e.g.,
computer-readable medium). The memory controller 610,
660 controls the flow of such information and instructions
between the processor 605, 655 and memory 615, 665.
Images to be output on the display 645, 685 may be off-loaded
to the graphics processor 625, 675 by the processor 605, 655.
The images are off-loaded by transferring geometric primi-
tive parameters, draw commands and instructions for control-
ling the operation of the graphics processor 625, 675. The
primitive parameters, draw commands and instructions are
transferred from the processor 605, 655 to the graphics pro-
cessor 625, 675 under control of the host interface 620, 670.
Inone implementation, a widely implemented graphics appli-
cation programming interface, such as the OpenGL-ES™
graphics language, Direct3D™, or the like, is utilized for the
software interface between the graphics processor 625, 675
and the applications provided by the processor 605, 655.

The graphics processor 625, 675 generates a color value for
each pixel of the display 645, 685 in response to the received
primitives, draw commands and instructions. The graphics
processor 625, 675 includes a parallel hashing module
coupled to a shader module, as more fully described above
with reference to FIG. 1. The parallel hashing module gener-
ates white noise as a function of one or more hash inputs, in
accordance with the method more fully described above with
reference to FIG. 2. The one or more hash inputs may be
primitive coordinates, texel addresses, a device identifier,
user password, base image and/or the like. The white noise
may be utilized as texel values by the shader module of the
graphics processor 625, 675. The white noise may also be
further processed by the graphics processor 625, 675 to gen-
erate other types of noise, such as pink noise, brown noise,
fractal noise and/or the like. The white noise may also be
combined with pixel data to generate encrypted images and
decrypt them, as more fully described above with reference to
FIGS. 1 and 4.

Accordingly, embodiments of the present invention advan-
tageously generate white noise for use in graphics and imag-
ing processes. The white noise may advantageously be uti-
lized for generating texel data by a graphics processor without
consuming texture memory. The white noise may also advan-
tageously be utilized to provide image encryption and image
decryption. Embodiments of the present invention advanta-
geously implement a parallel hashing module in hardware for
generating the white noise. The parallel hashing module
advantageously generates a random number having a high

10

15

20

25

30

35

40

45

50

55

60

65

8

degree of entropy in a single step. Accordingly, the parallel
hashing module advantageously reduces processing latency
in the graphics processor.

The foregoing descriptions of specific embodiments of the
present invention have been presented for purposes of illus-
tration and description. They are not intended to be exhaus-
tive or to limit the invention to the precise forms disclosed,
and obviously many modifications and variations are possible
in light of the above teaching. The embodiments were chosen
and described in order to best explain the principles of the
invention and its practical application, to thereby enable oth-
ers skilled in the art to best utilize the invention and various
embodiments with various modifications as are suited to the
particular use contemplated. It is intended that the scope of
the invention be defined by the Claims appended hereto and
their equivalents.

What is claimed is:

1. A method comprising:

receiving a plurality of samples of one or more hash inputs

selected from the group consisting of a primitive coor-
dinate, and a texel address; and

generating a plurality of white noise samples from a one-

way cryptographic hashing said hash input, wherein
each sample of the hash input is evaluated independent
and in parallel to each generate one or more white noise
samples.

2. The method of claim 1, wherein said white noise sample
is utilized as a texel value.

3. The method of claim 1, further comprising generating a
noise sample selected from the group consisting of a pink
noise, brown noise and fractal noise as a function of said
white noise sample.

4. The method of claim 3, wherein said noise sample is
utilized as a texel value.

5. The method of claim 1, further comprising combining
said white noise sample with a pixel value.

6. The method of claim 5, wherein said combining said
white noise sample with said pixel value comprises XOR-ing
said pixel value with said white noise sample.

7. A computer readable-medium containing a plurality of
instructions which when executed cause a computing device
to implement a method of generating white noise comprising:

receiving a plurality of samples of one or more hash inputs

selected from the group consisting of a plurality of
primitive coordinates, and a plurality of texel addresses;
and

evaluating each of said one or more hash inputs utilizing a

one-way cryptographic hash function to generate white
noise samples, wherein each sample of the hash input is
evaluated independently and in parallel to each generate
one or more white noise samples.

8. The computer readable-medium according to claim 7,
wherein each of said one or more hash inputs are evaluated
independently.

9. The computer readable-medium according to claim 8,
wherein each of said one or more hash inputs are evaluated in
parallel.

10. The computer readable-medium according to claim 7,
wherein said cryptographic hash function comprises a mes-
sage digest algorithm.

11. The computer readable-medium according to claim 7,
wherein said cryptographic hash function comprises a secu-
rity hash algorithm.

12. The computer-readable medium according to claim 7,
wherein said white noise samples are utilized as a plurality of
texel values.

US 9,264,265 B1

9

13. The computer-readable medium according to claim 7,
further comprising generating an encrypted image as a func-
tion of said white noise samples and an original image.

14. The computer-readable medium according to claim 13,
wherein said generating said encrypted image comprises bit-
wise XOR-ing pixel values of said rendered image with said
white noise samples.

15. A graphics processor comprising:

a shader module;

a texture module, coupled to said shader module, for tex-
ture mapping; and

aparallel one-way hashing module, coupled to said shader
module, for generating white noise as a function of one
or more hash inputs selected from the group consisting
of a primitive coordinate, and a texel address, wherein
each sample of the hash input is evaluated independently
to generate one or more white noise samples.

16. The graphics processor of claim 15, further compris-

ing:

a pixel write module coupled to said shader module for

outputting a rendered image;

5

10

15

20

10

a first XOR gate coupled to said parallel hashing module
and said pixel write module for generating an encrypted
image as a bit-wise function of said white noise and said
rendered image.

17. The graphics processor of claim 16, further comprising

a second XOR gate, coupled to said first XOR gate and said
parallel hashing module, for generating a decrypted image as
a bit-wise function of said white noise and said encrypted
image.

18. The graphics processor of claim 15, wherein said white
noise is returned to said shader module as a texel value.

19. The graphics processor of claim 16, wherein said par-
allel hashing module comprises a plurality of hardware
implemented Boolean operators arranged in a plurality of
stages.

20. The method of claim 1, further comprising:

receiving one or more additional hash inputs selected from
the group consisting of a device identifier and a user
password; and

generating the plurality of white noise samples also as a
function of cryptographic hashing said one or more
additional hash inputs.

#* #* #* #* #*

